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Abstract 

Squeeze film dampers are widely used technical components for turbomachinery as a 

means to cut down the amplitude of rotor vibration owing to unbalance [1]. This paper 

proposes a different type of circular dampers using highly compressible porous layers (HCPL) 

imbibed with Newtonian liquids. The elastic forces of the HCPL solid phase are negligible 

compared to the hydrodynamic forces generated within the porous layer [2]. Such processes 

were named ex-poro-hydrodynamic (XPHD). The Kozeny-Carman equation was used to 

compute permeability in function of porosity / compacticity. Analytic and numeric solutions 

were performed for the impact process of the partial and full narrow circular dampers in 

XPHD conditions. The results were compared with the case of the classical squeeze film 

damper. The damping capacity of a HCPL imbibed with Newtonian liquid was found to be 

considerably greater than that of the Newtonian liquid layer. 
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1. INTRODUCTION 

The damping under impact conditions in ex-poro-hydrodynamic regime of the highly 

compressible porous layers imbibed with Newtonian liquids was previous studied 

theoretically and experimentally for the aligned plates geometries [2] and sphere to plan 

contact [3]. The circular dampers are of particular interest due to the similarity with the 

commonly used squeeze film dampers [1]. The squeeze film dampers main advantages consist 

on the capability of reducing the effects of unbalance, i.e. the amplitude of rotor vibrations at 

resonance and the level of forces transmitted at supports under normal operating conditions, 

and in preventing the occurrence of non-synchronous instabilities or limiting their effects [1]. 

The present paper approaches for the first time the behaviour of an XPHD narrow circular 

damper subjected to impact. Analytic and numeric solutions were developed for the impact 

process of the partial and full narrow circular dampers in XPHD conditions. The results are 

compared with the case of narrow classical squeeze film damper. Attractive results can lead in 

designing more efficient XPHD squeeze dampers. Imagining such dampers as self-contained 

and using water as imbibing liquid make these devices eco-friendly. 

2. THEORY 

2.1 Main assumptions and problem formulation 

 The geometry of a circular squeeze damper is represented in Fig. 1. Assumptions applied 

in previous papers [2,3,4] will be considered for the present study: 

1. The liquid is Newtonian and the flow in the porous layer is laminar and 

isothermal/isoviscous. 

2. The elastic forces of HCPL are negligible compared to the hydrodynamic forces 

generated within the porous layer. 

3. The pressure across the HCPL thickness is constant. 
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4. The local deformation is present only on the normal direction of the porous layer. 

The solid mass is conserved throughout the process of layer deformation. For the 

sake of clarity the term of local compacticity, σ , is introduced, i.e. the 

instantaneous solid fraction. Consequently, the compacticity is related to porosity, 

ε , εσ −= 1 . This assumption was accepted in all the papers on XPHD lubrication: 

 00 hhh ii σσσ ==  (1) 

where 0σ  and 0h  are the uncompressed compacticity (solid fraction) and layer 

thickness. 

5. The HCPL permeability variation is correlated with compacticity according to 

Kozeny-Carman law: 

 ( )
2

31
σ
σφ −

=
D  (2) 

 Specific assumptions of the analyzed problem: 

6. The HCPL dimensions, 7.0/ ≤dB , lead to the concept of narrow bush for which 

the axial flow, in z  direction, is prevailing. 

7. The flow analysis is performed for both the compressed area, 0180=Ω , and the 

entire circumference of the bush, 0360=Ω . 

8. In the case of 0360=Ω  it is acknowledged that depressions appear in the divergent 

area and that the cavitational effects are not be taken into consideration. 

9. Issues related to the existence of a sealing system are not considered. 

10. The HCPL is fitted between the journal and the bush considering a pre-tightening 

in thickness ih  and a characteristic compacticity, iσ . 

 Because the porous layer is considered thin ( dhi << ) and the journal and housing are 

circular and rigid, the thickness variation of HCPL is: 

 θcosehh i −=  (3) 
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 In dimensionless form relation (3) becomes: 

 θcos1 eH −=  (3’) 

 Also, the minimal HCPL thickness is: 

 eH m −=1  (3’’) 

 From the flow conservation condition on z  direction, to a certain section, θ , of the HCPL 

results: 

 
z
phzV

d
dcos

η
φθε −=  (4) 

 Considering Eqs. (1), (2) and (3) in Eq. (4) and simplifying, results the pressure differential 

equation: 
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 Integrating Eq. (5) and applying the boundary condition 0pp =  at 2/Bz = , one can obtain 

the pressure distribution: 
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where 
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 The resultant force for squeeze at constant velocity is calculated: 

 θθ∫ ∫
Ω

=
2/

0

2/

0

ddcos
2

4
B

zdpF  (8) 

Performing the first integration and considering 00 =p , the contact force for squeeze at 

constant velocity becomes: 
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where 

 ( )∫
Ω

=
2/

0

dcos θθθ fI  (10) 

2.2 Analytic solutions 

 Unfortunately one cannot obtain a closed-form solution for Eq. (9) in order to get further 

the impact force and its variation. Therefore, approximate solutions were developed in two 

distinct cases: 

A. The case of 1<<iσ  

 It has been noticed in recent applications [3] that the XPHD impact damping capacity of 

HCPL materials require small initial compacticities, 1.005.0 ÷=iσ . Considering this 

observation, ee

i

≅
−σ1

, Eq. (7) becomes: 

 ( )
( )3cos1

cos
θ

θθ
e

fa −
=  (11) 

 Due to this approximation the model is restricted to relatively small eccentricities, i.e. 

5.0<e . Considering these assumptions and performing the integration of the pressure 

distribution for the compressed area of HCPL, 0180=Ω , one finally obtains the force at 

constant velocity: 
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 To facilitate the calculation of impact force the Booker approximation for the journal 

bearings hydrodynamic model [5] is used. Thus, the force at constant velocity for the 

compressed area of HCPL is: 
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( ) ( ) 2/52
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−−
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 Using the Bowden and Tabor model for hydrodynamic squeeze under impact [6] and 

considering ii
m h

t
eh

t
HV

d
d

d
d

=−=  the velocity variation will be computed from the following 

equation: 

 tFVM dd −=  (14) 

Hence, using Eq. (14) and the relation of force given by Eq. (13) the velocity variation is 

obtained as function of the minimum layer thickness, mH : 
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 Finally, performing the integral, the velocity variation during impact process, in 

dimensionless form, is: 
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 The squeeze under impact process is entirely performed in XPHD conditions if at the end 

of the approaching process when velocity becomes zero the dimensionless minimum 

thickness, mH , is greater than the imposed initial compacticity, iσ  ( imH σ> , see Eq. (1)). 

Also, the maximum allowable dimensionless impulse, maxM , results for the squeeze process, 

performed entirely in XPHD conditions, applying the boundary condition 0=V  when 

imH σ=  in Eq. (16): 

 
( ) ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

−
= 11

172
Po

2/32

2

max
ii

iM
σσ

σπ  (17) 

 Introducing in Eq. (13) the velocity variation during impact process given by Eq. (16), one 

obtains the impact force variation, in dimensionless form, as function of mH : 
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 Following the same procedure, one can find the maximum allowable dimensionless 

impulse, maxM , for a full, 0360=Ω , circular damper in a squeeze XPHD process: 
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 Also the dimensionless impact force for the entire circumference results: 
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B. The case of 1<<e  

 This assumption is suitable for high frequency operating conditions. When the damper is 

working with high frequency the eccentricity reduction is normal. One can estimate that the 

eccentricities lie in the range of 1.005.0 ÷≅e . In this case Eq. (7) becomes: 
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 If noting 
i

eE
σ−

=
1

 then Eq. (21) can be rewritten as: 

 ( )
( )2

2
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θ

θθθ
E
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+

=  (21’) 

 Considering this case of small eccentricities, one integrating the pressure distribution over 

the compressed area of HCPL (i.e. 0180=Ω ) using Eq. (21’), the integral I  given by Eq. 

(10) becomes: 

 ( ) θθθ
π
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2/

0
∫= bb fI  (22) 

 The integral bI is solved using Booker integrals method [7], and one obtains: 
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 Finally, the force at constant velocity over the compressed area of HCPL is: 
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 Using Eq. (24) and the Bowden and Tabor model for squeeze under impact [6] given by 

Eq. (14), the velocity variation during impact process as function of E  results: 

 ( ) ∫−
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E

b
i

i EI
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The velocity variation in dimensionless form is: 
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 The maximum allowable dimensionless impulse, maxM , results for the squeeze process 

applying the boundary condition 0=V  when imH σ=  in Eq. (26): 
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=

1

0
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σ  (27) 

 Introducing the velocity variation expressed by Eq. (26) in Eq. (24), the impact force in 

dimensionless form results: 
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2.3 Numeric solutions 

 In order to model the impact squeeze process for a narrow circular damper for the range of 

all eccentricities and initial compacticities, the integral I  given by Eq. (10) is computed 

numerically using the Romberg integration method. Following the same procedure as for the 
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analytic case using Bowden and Tabor model for squeeze under impact, the variations of the 

velocity and impact force are computed. 

 The results mach perfectly with the analytical solution in the case of 1<<e  and are in 

good agreement for 1<<iσ  (a difference arises due to the approximation of Eq. (7) given by 

Eq. (11)). The computation was made for both partial, 0180=Ω , and full, 0360=Ω , squeeze 

damper. 

3. RESULTS AND DISCUSSIONS 

The results are presented in terms of dimensionless impact force for both analytical cases, 

1<<iσ  and 1<<e , and for the numerical solution. Fig. 2 shows the impact force variation as 

function of minimum dimensionless HCPL thickness, mH , for different dimensionless 

impulses M  for both partial and full circular damper. One can see that the dimensionless 

impact force sF  increases with the dimensionless impulse M  at a given small compacticity 

08.0=iσ . The computation is achieved using the analytic approach of small initial 

compacticities, 1<<iσ . 

 In the other case of small eccentricities one can observe the same increase of the 

dimensionless impact force sF  but for considerably greater impulses M . Fig. 3 shows the 

variation of the dimensionless impact force for different dimensionless impulses at a given 

initial compacticity 8.0=iσ . The results are obtained using the analytic approach of small 

eccentricities, 1<<e . It is important to note that for small eccentricities correspond very high 

initial compacticities.  

 Adapting for XPHD conditions the Knox model [8] used in the analysis of the 

hydrodynamic squeeze process in magnetic bearings one can observe an acceptable match of 

the results for the cases of small eccentricities and small initial compacticities. 
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 The numerical solution that disregards any simplifying assumption covers the entire range 

of values for initial compacticities and eccentricities. Further, the variation of dimensionless 

impact force as function of minimum HCPL thickness, mH , for a given impulse 20000=M  

and different initial compacticities is presented in Fig. 4. One can remark that the optimal 

value for compacticity can be found around 5.0=iσ . The results obtained for the 

dimensionless impact force are generally smaller for 0360=Ω  compared to 0180=Ω  

wrapping angle. The maximum value of the impact force decreases from very small 

eccentricities till the optimal value of compacticity and then increases as the initial 

compacticities increase. 

 A comparison between the analytic and numeric results of the dimensionless impact force 

as function of minimum HCPL thickness, mH , for a given impulse 500=M  and different 

small initial compacticities is presented in Fig. 5. One can observe a good correlation between 

the two approaches. 

 The previous papers regarding XPHD processes [2, 4, 9-11] have pointed out the drastic 

increase of load carrying capacity and, also, the significant damping capacity of porous layers 

in XPHD process, compared to hydrodynamic (HD) regime. The XPHD regime gives a load 

capacity of 2-3 orders of magnitude greater than the load capacity of HD regime. Hence, it is 

interesting to compare the performance of the squeeze process of a circular damper under 

impact in XPHD regime with the HD regime. Therefore, using the model of squeeze under 

impact in HD regime presented in Appendix, the dimensionless impact force for both 1800 

and 3600 arc bush from Eqs. (A4) and (A9) are: 
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⎦
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 Fig. 6 shows a comparison between the dimensionless impact forces in both HD and 

XPHD regimes for a given dimensionless impulse 500=M  and a quite small initial 

compacticity, 05.0=iσ . One can observe the impressive decrease of the maximum impact 

force in XPHD squeeze that sustains the interesting damping capacity of the porous layer 

imbibed with liquid. 

 Also, it is attractive to compare the maximum allowable impulses for both regimes. Hence, 

the maximum allowable impulse obtained in HD regime for a partial journal bearing, 

presented in the Appendix in Eq. (A5), is: 

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−= 2/3max

11
6 m

HD

H
M π  (31) 

where mfH is the minimum film thickness at the end of the HD squeeze process, greater than 

the allowable one, maH . 

As a case study, the comparison can be performed using the following input data: 

• dB /  ratio, in both cases: 5.0/ =dB ; 

• initial film/HCPL thickness, in both cases: mmhi 1= ; 

• complex parameter of HCPL: 21312 1010 mD −− ÷= ; 

• initial compacticity: 1.0=iσ ; 

• allowable fluid film thickness: mha μ5= ; 

Remark: the minimum final film thickness, fh , at the end of HD squeeze process, will be 

considered equal with the allowable one, ah , i.e. mamf HH = . 

 The ratio between the maximum allowable impulses given by Eqs. (17) and (31), using the 

intervals of data, is: 
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 2

max

max 1010 ÷≈=ℜ HD

XPHD

M
M  (32) 

 This result is in agreement with previous comparisons made in various papers [4, 12, 13]. 

4. CONCLUSIONS 

1. A new model for squeeze under impact of a narrow circular damper with HCPL 

imbibed with Newtonian liquid in XPHD conditions was elaborated. The circular 

dampers are of particular interest because of their similarity with the commonly used 

squeeze film dampers. 

2. Both analytic and numeric approaches were performed for partial, 0180=Ω , and full, 

0360=Ω , circular squeeze damper in XPHD conditions. 

3. The dimensionless impact force was analyzed for various initial compacticities and 

different dimensionless impulses. 

4. A good correlation is obtained between the analytic and numeric approaches. 

5. The results are compared with the case of classical squeeze film damper. The HD and 

XPHD regimes were compared in terms of dimensionless impact force and 

dimensionless maximum impulse. One can observe the impressive damping capacity 

of HCPL imbibed with liquid and an increase of over 10010÷  in maximum allowable 

impulse for the XPHD regime versus HD regime. 

6. Attractive results can lead in designing more efficient XPHD squeeze dampers. 
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 NOTATIONS 

B  – bush length 

d  – journal diameter 

fd  – fibre diameter of HCPL 

D  – complex parameter of HCPL, 
k

d
D f

16

2

=  

e  – eccentricity 

e  – dimensionless eccentricity, 
ih

ee =  

E  – dimensionless parameter, 
i

eE
σ−

=
1

 

F  – imposed force 

sF  – impact force 

sF  – dimensionless impact force, 
0

3

3

VBd
hF is

η
 

h  – layer/film thickness 

0h  – initial layer/film thickness 

ih  – imposed initial layer thickness 
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mh  – minimal layer/film thickness 

H  – dimensionless layer/film thickness, 
ih

h  

mH  – minimal dimensionless layer/film thickness, 
i

m

h
h  

maH  – minimal dimensionless allowable layer/film thickness, 
0h

hma  

mfH  – minimal final dimensionless film thickness, 
0h

hmf  

k  – correction constant in Kozeny-Carman law 

M  – mass of impact 

M  – dimensionless impulse, 
dB
VMhi

3
0

2

η
 

maxM  – maximum allowable dimensionless impulse 

Po  – permeability number, 
D
hi

2

Po =  

ℜ  – dimensionless impulses ratio 

V  – impact velocity 

0V  – initial impact velocity 

V  – dimensionless impact velocity, 
0V

V  

ε   – HCPL porosity 

η   – liquid viscosity 

θ   – layer/film coordinate 

σ   – HCPL compacticity  

0σ  – HCPL initial compacticity 

iσ  – HCPL imposed initial compacticity 
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φ   – HCPL permeability 

Ω   – wrapping angle 

 APPENDIX 

 

Hydrodynamic squeeze under impact for narrow journal 

bearings with 1800 and 3600 arc bush 

 

• for 1800 arc bush: 

 The hydrodynamic squeeze load carrying capacity of a narrow journal bearing using the 

Booker approximation [5] is: 

 2/53
0

3

4 mHh
dVBF πη

=  (A1) 

 Following the same procedure as for XPHD regime, using Bowden and Tabor model [6], 

one can find the velocity variation and the impact force: 

 ⎟⎟
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 Or, in dimensionless form, the impact force is: 
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Applying the same procedure as for XPHD regime, one can find the maximum 

dimensionless allowable impulse for the squeeze process held entirely in HD regime: 
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 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−= 2/3max

11
6 mH

M π  (A5) 

where the minimum final film thickness, mfH , at the end of the squeeze process must be 

greater than the allowable one ( mamf HH > ). 

• for 3600 arc bush: 

The hydrodynamic squeeze load carrying capacity of a narrow journal bearing 

corresponding with Booker HD model [5]: 
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 Further more, the velocity variation and the impact force are: 
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Therefore, in dimensionless form, the impact force is: 
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Also the dimensionless maximum impulse results: 
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Fig. 1 XPHD circular squeeze damper 
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Fig. 2 The dimensionless impact force sF  as function of minimum dimensionless HCPL 

thickness mH  for different dimensionless impulses M  at a given initial compacticity 

08.0=iσ  

Fig. 3 The dimensionless impact force sF  as function of minimum dimensionless HCPL 

thickness mH  for different dimensionless impulses M  at a given initial compacticity 

8.0=iσ  

Fig. 4 The dimensionless impact force sF  as function of minimum dimensionless HCPL 

thickness mH  for a given dimensionless impulse M  and different initial compacticities 

Fig. 5 Comparison between analytic and numeric results of the dimensionless impact 

force sF  as function of minimum dimensionless HCPL thickness mH  for a given 

dimensionless impulse M  and different small initial compacticities 

Fig. 6 The dimensionless impact force sF  as function of minimum dimensionless 

film/HCPL thickness mH  for a given dimensionless impulse M  in both HD and XPHD 

regimes 

 


